Understanding microstructure of the brain by comparison of neurite orientation dispersion and density imaging (NODDI) with transparent mouse brain

نویسندگان

  • Kanako Sato
  • Aurelien Kerever
  • Koji Kamagata
  • Kohei Tsuruta
  • Ryusuke Irie
  • Kazuhiko Tagawa
  • Hitoshi Okazawa
  • Eri Arikawa-Hirasawa
  • Nobuhiro Nitta
  • Ichio Aoki
  • Shigeki Aoki
چکیده

BACKGROUND Neurite orientation dispersion and density imaging (NODDI) is a diffusion magnetic resonance imaging (MRI) technique with the potential to visualize the microstructure of the brain. Revolutionary histological methods to render the mouse brain transparent have recently been developed, but verification of NODDI by these methods has not been reported. PURPOSE To confirm the concordance of NODDI with histology in terms of density and orientation dispersion of neurites of the brain. MATERIAL AND METHODS Whole brain diffusion MRI of a thy-1 yellow fluorescent protein mouse was acquired with a 7-T MRI scanner, after which transparent brain sections were created from the same mouse. NODDI parameters calculated from the MR images, including the intracellular volume fraction (Vic) and the orientation dispersion index (ODI), were compared with histological findings. Neurite density, Vic, and ODI were compared between areas of the anterior commissure and the hippocampus containing crossing fibers (crossing areas) and parallel fibers (parallel areas), and the correlation between fiber density and Vic was assessed. RESULTS The ODI was significantly higher in the crossing area compared to the parallel area in both the anterior commissure and the hippocampus (P = 0.0247, P = 0.00022, respectively). Neurite density showed a similar tendency, but was significantly different only in the hippocampus (P = 7.91E-07). There was no significant correlation between neurite density and Vic. CONCLUSION NODDI was verified by histology for quantification of the orientation dispersion of neurites. These results indicate that the ODI is a suitable index for understanding the microstructure of the brain in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging

Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...

متن کامل

NODDI with dispersion anisotropy

PURPOSE This work presents a technique for estimating the dispersion anisotropy in neurite orientations, using Neurite Orientation Dispersion and Density Imaging (NODDI) [1]. NODDI is a diffusion MRI technique, recently developed to directly quantify the microstructural features (density and orientation dispersion) of neurites in vivo, in the human brain. The parameters it provides offer higher...

متن کامل

White Matter Changes of Neurite Density and Fiber Orientation Dispersion during Human Brain Maturation

Diffusion tensor imaging (DTI) studies of human brain development have consistently shown widespread, but nonlinear increases in white matter anisotropy through childhood, adolescence, and into adulthood. However, despite its sensitivity to changes in tissue microstructure, DTI lacks the specificity to disentangle distinct microstructural features of white and gray matter. Neurite orientation d...

متن کامل

NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain

This paper introduces neurite orientation dispersion and density imaging (NODDI), a practical diffusion MRI technique for estimating the microstructural complexity of dendrites and axons in vivo on clinical MRI scanners. Such indices of neurites relate more directly to and provide more specific markers of brain tissue microstructure than standard indices from diffusion tensor imaging, such as f...

متن کامل

Data of NODDI diffusion metrics in the brain and computer simulation of hybrid diffusion imaging (HYDI) acquisition scheme

This article provides NODDI diffusion metrics in the brains of 52 healthy participants and computer simulation data to support compatibility of hybrid diffusion imaging (HYDI), "Hybrid diffusion imaging"[1] acquisition scheme in fitting neurite orientation dispersion and density imaging (NODDI) model, "NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017